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A unified description for the structures of the homologous

series Ga2O3(ZnO)m, gallium zinc oxide, is presented using

the superspace formalism. The structures were treated as a

compositely modulated structure consisting of two subsystems.

One is constructed with metal ions and the other with O ions.

The ideal model is given, in which the displacive modulations

of ions are well described by the zigzag function with large

amplitudes. Alternative settings are also proposed which are

analogous to the so-called modular structures. The validity of

the model has been confirmed by refinements for phases with

m = 6 and m = 9 in the homologous series. A few complex

phenomena in real structures are taken into account by

modifying the ideal model.
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1. Introduction

Long-period structures are known in ZnO-based homologous

series, M2O3(ZnO)m (M = In, Fe, Ga; Kasper, 1967; Kimizuka

et al., 1995, 1993), where m is an integer. The homologous

series In2O3(ZnO)m has drawn attention as a candidate for

photocatalysts (Kudo & Mikami, 1998), transparent

conducting oxides (Moriga et al., 1998) and thermoelectric

materials (Ohta et al., 1996). Structures of In2O3(ZnO)m are

basically isotypical to those of LuFeO3(ZnO)m (Isobe et al.,

1994). Structures of Fe2O3(ZnO)m are also understood as

superstructures of In2O3(ZnO)m (Kimizuka et al., 1993).

Recently, the structure of Ga2O3(ZnO)6 has been determined

(Michiue et al., 2008), which is of a new type and is completely

different from those in the homologous series In2O3(ZnO)m

and Fe2O3(ZnO)m. In systems In2O3–M2O3–ZnO (M = Fe, Ga,

Al), the homologous phases InMO3(ZnO)m are formed

(Kimizuka et al., 1989; Nakamura et al., 1990, 1991, 1993),

which are basically isostructural with In2O3(ZnO)m. Thus, only

Ga2O3(ZnO)m forms a different type of structure series from

that of the other ZnO-based homologous series.

A structure unit consisting of metal ions in Ga2O3(ZnO)6

resembles the arrangement of Zn ions in the wurtzite ZnO

structure. A structure unit of oxygen ions in Ga2O3(ZnO)6

also resembles the arrangement of the O ions in ZnO. The

structure of Ga2O3(ZnO)6 as a whole is, however, completely

different from that of wurtzite. One of the most distinct

differences is that the distance between the neighboring metal

ions is longer than that between neighboring O ions in

Ga2O3(ZnO)6, while the two distances are equal in ZnO. That

is, the density of the metal ions is lower than that of the O ions

in Ga2O3(ZnO)6, which coincides with the chemical compo-

sition of this compound. Structures of other phases in the

homologous series Ga2O3(ZnO)m were predicted, in which the

basic period of metal ions was shorter than that of O ions

along c, analogous to Ga2O3(ZnO)6. Thus, it is expected that



the structures of the homologous series Ga2O3(ZnO)m can be

treated as commensurate phases of the compositely modu-

lated structures (Yamamoto, 1996; van Smaalen, 1995). Many

studies (van Smaalen, 1987; Yamamoto et al., 1985; Perez-

Mato et al., 1987) have proved that the superspace formalism,

which was originally developed for the analysis of incom-

mensurate structures (de Wolff, 1974; Janner & Janssen,

1980a,b), is useful for the description of commensurate

structures.

In the usual modulated structures, an initial model for the

refinement in (3 + 1)-dimensional superspace is a so-called

basic structure, in which each atom is expressed by a straight

line extending along the fourth direction. In compositely

modulated structures, an initial model is usually obtained by

combining basic structures of the two subsystems. Although

the structures of the homologous series Ga2O3(ZnO)m are

considered as composite crystals, we were unable to use such

an initial model because a basic structure was not available for

either of the two subsystems. Similar situations often happen

when a structure model in superspace

is established for the unified descrip-

tion of long-period structures in a

homologous series such as layered

perovskites of Arivillius phases

(Boullay et al., 2002) and Ruddlesden-

Popper phases (Elcoro et al., 2001,

2004), hexagonal perovskites (Evain

et al., 1998; Perez-Mato et al., 1999),

metal-deficient perovskites (Elcoro et

al., 2000; Boullay et al., 2003), shear

structures (Michiue et al., 2005, 2006,

2007) and hexagonal ferrites (Orlov et

al., 2007). In order to treat these

structures as a kind of (compositely)

modulated structure, we need to

introduce discontinuous modulation

functions, such as the crenel function

and the sawtooth function. In other

words, the modulations in these

structures are too strong to define a

conventional basic structure. During

the process of the (3 + 1)-dimensional

description for Ga2O3(ZnO)m, it has

been proven that displacive modula-

tions of ions in the structures are

properly defined by the zigzag func-

tion with large amplitudes. This

originated from a unique structural

character in this homologous series.

The structures are constructed by

stacking of the slab-like structure

unit. Two consecutive slabs are

related to each other by mirror

symmetry. The mirror plane acts like a

twinning operation. In other words,

the twinning in this case is considered

to be a structure-building operation,

that is a kind of unit-cell twinning that is classified by Hyde et

al. (1979). This kind of twinning has been described for some

minerals with a so-called modular structure, for which a

unified description based on the superspace formalism was

recently presented (Elcoro et al., 2008).

In this study, a unified description for structures in the

homologous series Ga2O3(ZnO)m is presented using the

superspace formalism. In x3 an ideal structure model is

presented. First, the ideal structure is defined in three-

dimensional space. Next, the model is treated as a compositely

modulated structure and expressed in (3 + 1)-dimensional

space. It is shown that there are several possible ways for the

setting of subsystems. In x4 the validity of the model is

confirmed by the refinements of real structures in the homo-

logous series. Predicted structures of even m are constructed

by simply extending the structure units seen in Ga2O3(ZnO)6,

while those of odd m consist of structure units which are of

different types from those used for even m. Therefore, the

structure refinement is necessary for both even and odd m.
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Table 1
Crystallographic data and conditions for data collection and refinement for Ga2O3(ZnO)6 and
Ga2O3(ZnO)9.

For all structures: Z = 8, Dx = 5.68 Mg m�3. Experiments were carried out at 298 K with Mo K� radiation
using a Rigaku AFC-7R diffractometer. Data collection used ! scans. The weighting scheme based on
measured s.u.s was w = 1/[�2(I) + 0.0001F2].

m = 6 m = 9

Crystal data
Chemical formula Ga0.25O1.25Zn0.75 Ga0.1818O1.0909Zn0.8181

Mr 84.5 83.6
Crystal system, space group Orthorhombic, Cmmm(00�)0s0 Orthorhombic, Cmcm(00�)000
Wave vectors q = 9c*/8 q = 12c*/11
a, b (Å) 3.2465 (9), 19.640 (5) 3.2494 (14), 19.722 (6)
c1 (Å) 3.0979 (8) 3.0513 (11)
c2 2.7537 (7) = c1 � 8/9 2.7970 (10) = c1 � 11/12
V (Å3) 197.53 (9) 195.54 (12)
No. of reflections for cell

measurement
25 25

� (mm�1) 24.6 24.7
Color Colorless Colorless
Crystal size (mm) 0.12 � 0.06 � 0.02 0.20 � 0.12 � 0.024

Data collection
Radiation source Rotating anode Rotating anode
Absorption correction ’ scan Analytical
Tmin, Tmax 0.18, 0.61 0.034, 0.417
No. of measured, independent

and observed [I > 2�(I)]
reflections

7287, 3699, 1349 3662, 1862, 993

Rint 0.122 0.048
� values (�) �max = 45.0, �min = 2.7 �max = 30.1, �min = 2.8
Range of h, k, l1, l2 h = 0! 6, k = 0! 38, l1 =

�7! 7, l2 = �6! 6
h = 0! 4, k = �27! 0, l1 =
�7! 7, l2 = �7! 7

No. and frequency of standard
reflections

3 every 200 3 every 200

Intensity decay (%) 0.0 0.0

Refinement
R[F2 > 2�(F2)], wR(F2), S 0.044, 0.099, 1.03 0.034, 0.068, 1.35
No of reflections 3699 1862
No. of parameters 115 149
��max, ��min (e Å�3) 2.29, �2.27 1.60, �1.21
Extinction coefficient 404 (14) 590 (20)

Computer programs: JANA2006 (Petřı́ček et al., 2006).



The structure of Ga2O3(ZnO)6 is refined using the (3 + 1)-

dimensional model for even m. Intensity data collected in our

previous study (Michiue et al., 2008) are used. In addition,

single crystals of Ga2O3(ZnO)9 were newly grown for intensity

data collection (as mentioned in x2), and the structure is

refined using the model proposed for odd m. A few complex

phenomena in real structures, which are ignored in x3, are

taken into account by modifying the ideal model.

2. Experimental

Single crystals of Ga2O3(ZnO)9 were grown by heating a

mixture of metal oxides. Ga2O3 (Rare Metallic Co. Ltd,

99.99%) and ZnO (High Purity Chemicals, 99.99%), in a

molar ratio of Ga2O3:ZnO = 1:9, were mixed in an agate

mortar with ethanol. The sample was dried and heated at

1723 K for 4 d in an unsealed Pt tube, then taken out of the

furnace. Intensity data were collected for a single-crystal

mounted on a four-circle diffractometer (Rigaku AFC 7R). X-

ray diffraction data collected for a single crystal of

Ga2O3(ZnO)6 in our previous study (Michiue et al., 2008) were

again used for the (3 + 1)-dimensional refinement in this work.

Crystallographic data and the conditions for data collection of

Ga2O3(ZnO)6 and Ga2O3(ZnO)9 are listed in Table 1.1

Programs used were JANA2006 (Petřı́ček et al., 2006) for

calculations, and VESTA (Momma & Izumi, 2008) and

ATOMS (Dowty, 2005) for graphics.

3. Structure model

3.1. Ideal structures in three-dimensional space

For the unified description of Ga2O3(ZnO)m structures first

we define an ideal structure model in three-dimensional space,

which is then expressed in (3 + 1)-dimensional superspace.

The ideal model here is not an absolute one but is tentative,

and is used as an initial model in the refinement. The ideal

model should ideally be transformed into a (3 + 1)-dimen-

sional model as simply as possible. We need to consider two

cases of even and odd m separately.

Structural relationships between Ga2O3(ZnO)m and wurt-

zite ZnO have been described in our previous study (Michiue

et al., 2008). The arrangement of metal ions (i.e. Ga and Zn

ions, which are represented by M hereafter) in part of

Ga2O3(ZnO)m resembles that of the Zn ions in the wurtzite

ZnO structure. Also, the arrangement of O ions in part of

Ga2O3(ZnO)m resembles that of O ions in the wurtzite

structure. In the Ga2O3(ZnO)m structure, however, the two

structure units (one consisting of M ions and the other of O

ions) are combined in a different mode from that seen in the

wurtzite structure, resulting in a centrosymmetric structure in

contrast to the noncentrocymmetric structure of wurtzite.

Therefore, it is not easy to build up an ideal model for

Ga2O3(ZnO)m in connection with the wurtzite structure.

Instead, the structure in Fig. 1 is used as an ideal model, which

is obtained by modifying a real (i.e. refined) structure of phase

m = 6 as follows. First, grid points (y, z) = (i/8, j/16) are drawn

on planes x = 0 and x = 1
2 in the real structure, where i and j are

integers. It is found that each M ion on the planes is close to

one of these grid points, as shown in Fig. 2(a). Next, every M

ion is displaced so as to locate on the nearest grid point. The

arrangement of O ions in the real structure is also modified by

a similar manner to that used for M ions, so that all O ions are

put on the grid points (y, z) = (1/16 + i/8, 1/36 + j/18) on planes

x = 0 and x = 1/2 (Fig. 2b). Thus, the structure model in Fig. 1 is

obtained, which has the same symmetry as that of the real

structure for m = 6 with the space group Cmcm. Considering

the predicted structures for other phases (Michiue et al., 2008),

the ideal model for even m are generally given as that

consisting of M ions at (y, z) = (i/8, j/2(m+2)) and O ions at (y,

z) = (1/16 + i/8, 1/4(m + 3) + j/2(m + 3)). To establish an ideal

model for odd m, a predicted model in our previous study is

used instead of a refined structure. In this case M ions are on

the grid points (y, z) = (1/16 + i/8, 1/4(m + 2) + j/2(m + 2)),

while O ions are on (y, z) = (i/8, j/2(m + 3)).

Strictly, the ideal model in Fig. 1 needs a few more modi-

fications before being used in the refinement of real structures.
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Figure 1
Ideal structure of Ga2O3(ZnO)6 projected along a. Smaller and larger
spheres are metal (Zn/Ga) and O ions, respectively. Metal–oxygen
distances less than 2.5 Å are indicated by bonds. Square-pyramidal
coordination sites are in red.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN5090). Services for accessing these data are described
at the back of the journal.



One of the non-equivalent metal sites on the mirror plane z =

1/4 is in a square-pyramidal coordination (colored in red in

Fig. 1); a metal ion at (0, 1/8, 1/4) is coordinated by five O ions

at (�1/2, 1/16, 7/36), (�1/2, 1/16, 11/36) and (0, 3/16, 1/4). As

the square-pyramidal coordination is a rather peculiar and

unstable environment for Ga and Zn ions, complex

phenomena were observed around this site in the structure

refinement of a phase m = 6 (Michiue et al., 2008). It is

expected that a similar situation is also found in other phases.

These are carefully treated in structure refinements in x4, but

ignored in this section for simplicity.

3.2. Composite crystal model in (3 + 1)-dimensional super-
space

Here the structures presented in x3.1 are treated as

composite crystals consisting of two subsystems. However, as

mentioned in x1, the problem is that a conventional basic

structure is not available for either of the two subsystems.

Therefore, we are unable to establish an initial model by

combining the basic structures of the two subsystems. Instead,

an ideal structure model is expressed in (3 + 1)-dimensional

superspace and used as an initial model, in which an atom

extends in the fourth direction as a zigzag rather than a

straight line with respect to x2.

3.2.1. Phases of even m. The arrangement of M and O ions

on the x = 0 plane for the m = 6 phase is shown in Fig. 3. The
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Figure 2
Deviation of (a) metal (Zn/Ga) ions from the grid points (y, z) = (i/8, j/16)
and (b) O ions from the grid points (y, z) = (1/16 + i/8, 1/36 + j/18) in the
structure of Ga2O3(ZnO)6.

Figure 3
Arrangement of (a) metal and (b) oxygen ions on the x = 0 plane in the
ideal model for Ga2O3(ZnO)6.



2(m + 2) layers of M ions are seen in a unit cell along c, while

2(m + 3) O layers are contained in a unit cell. The structure is

considered to be a composite crystal, in which M ions

construct the first subsystem and the second subsystem

consists of O ions. Both subsystems are obviously different

from the conventional basic structure as shown below. The

ratio of basic periods for the two subsystems along c is c1/c2 =

(m + 3)/(m + 2). The two subsystems have the same periodi-

city along a and b. Therefore, a unit basis set for a composite

crystal model is defined by a, b, c1 = Cm/(m + 2), and c2 = Cm/

(m + 3), where Cm is the c axis for a superstructure of

Ga2O3(ZnO)m. The modulation wavevector of the first

subsystem is q1 = c�2 = (m + 3)c�1/(m + 2), or � = (m + 3)/

(m + 2). A superspace group Cmmm(00�)0s0 is taken because

the space group at the three-dimensional section t0 = 0

[modulo 1/2(m + 2)] of this superspace group is Cmcm for

even m (that is, � = odd/even) as listed in Table 2.

A zigzag arrangement of M ions is seen as indicated in Fig.

3(a), which is considered to be a type of unit-cell twinning

(Hyde et al., 1979). M ions indicated by P1–P8 on the zigzag

line M1 in Fig. 3 are at z = 0, 1, 2, . . . in the sublattice based on

c1. These ions are allotted for the M1 ion in the (3 + 1)-

dimensional model as projected on the x3–x4 plane (Fig. 4a),

which are at x3 = 0, 1, 2, . . . and extend along x4. A three-

dimensional section defined by t0(= x4 � �x3) = 0 is expressed

by a horizontal line in the figure. As indicated in the figure, the

fractional coordinate x4 for Pn (n = 1, 2, 3, . . . ) on the three-

dimensional section is simply given by (n � 1)� = 9(n � 1)/8.

These positions are translated in a unit cell, as shown in Fig.

4(b). The fractional coordinates y of P1–P8 varies from �1/8

to 7/8, as seen in Fig. 3(a). Considering Fig. 3(a) and Fig. 4(b),

the positions of P1–P8 are plotted on the x2–x4 plane in Fig.

5(a). It seems that the sawtooth function is suitable to describe

such an arrangement. An occupation domain with a sawtooth

function defined by the center (x1
0, x2

0, x3
0, x4

0) = (0, 3/8, 0, 0),

the width of an occupation domain � = 1
2, and the amplitude

Vx2 = 1/2 corresponds to ions P7, P8, P1, P2 and P3 in three-

dimensional space. Applying the symmetry operation �x1, x2,

�x3, 1
2 � x4 to this occupation domain, another occupation

domain is generated, giving ions P3–P7 in three-dimensional

space. However, the problem is that occupation domains

overlap at the edge positions (x1, x2, x3, x4) = (0, x2, 0, 1/4 +

n/2), causing double multiplicities for P3 and P7 ions. There-

fore, occupation domains corresponding to these ions should

be separated from the original one and treated as independent

sites with the crenel function, for which occupation factors are

reduced so as to have the proper multiplicity. We can settle

this problem in an alternative way. That is the use of the zigzag

function, which was recently implemented in JANA2006 to

describe modular structures (Elcoro et al., 2008). In a

continuous zigzag function with � = 1
2, the multiplicity is

properly treated including the edge positions. Thus, a zigzag

function for M1 is defined by (x1
0, x2

0, x3
0, x4

0) = (0, 3/8, 0, 0),

� = 1
2, and Vx2 = 1

2[Vx2 = (m + 2)/16 in general], as in Table 3.

M ions indicated by Q1–Q8 on the zigzag line M2 (Fig. 3a)

are at z = 1/2, 3/2, 5/2, . . . in a sublattice based on c1. These

ions are allotted for the M2 ion in the (3 + 1)-dimensional

model as projected on the x3–x4 plane (Fig. 4c), which ions are

at x3 = 1/2, 3/2, 5/2, . . . and extend along x4. The atomic

coordinate x4 for Qn (n = 1, 2, 3, . . . ) on the three-dimensional

section t0 = 0 is given by (n � 1
2)� = 9(2n � 1)/16. These

positions are translated in a unit cell as shown in Fig. 4(d).

Considering Fig. 3(a) and Fig. 4(d), the positions of Q1–Q8 are

plotted on the x2–x4 plane in Fig. 5(a). Parameters for a zigzag

function of M2 are obtained from the figure, as given in Table

3. M ions on the zigzag line M10 and M20 in Fig. 3(a) are

generated from those on the zigzag line M1 and M2 by

symmetry operations.

O ions indicated by R1–R9 on the zigzag line O1 in Fig. 3(b)

are at z = 1/4, 5/4, 9/4, . . . in a sublattice based on c2, that is z =
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Table 2
Symmetry operations and space groups at three-dimensional sections of superspace groups.

M is the denominator in �; � = N/M.

Symmetry operations
(0, 0, 0, 0; 1

2,
1
2, 0, 0) +

t0 = 0
(modulo 1/2M)

t0 = 1/4M
(modulo 1/2M) t0 = general

Cmmm(00�)0s0 x1, x2, x3, x4; �x1, x2, x3, x4; � = odd/even Cmcm Cmc21 Cmc21

x1, �x2, x3, 1
2 + x4; (as t0 = general)

�x1, �x2, x3, 1
2 + x4; � = even/odd C2/m Cm2m Cm

�x1, �x2, �x3, �x4; x1, �x2, �x3, �x4;
�x1, x2, �x3, 1

2 � x4; � = odd/odd C2/m Cm2m Cm
x1, x2, �x3, 1

2 � x4

Cmcm(00�)000 x1, x2, x3, x4; �x1, x2, x3, x4; � = odd/even C2/m Cm2m Cm
x1, �x2, 1

2 + x3, x4;
�x1, �x2, 1

2 + x3, x4; � = even/odd Cmcm Cmc21 Cmc21

�x1, �x2, �x3, �x4; x1, �x2, �x3, �x4; (as t0 = general)
�x1, x2, 1

2 � x3, �x4; � = odd/odd C2/m Cm2m Cm
x1, x2, 1

2 � x3, �x4

Cmcm(00�)0s0 x1, x2, x3, x4; �x1, x2, x3, x4; � = odd/even C2/m Cm2m Cm
x1, �x2, 1

2 + x3, 1
2 + x4;

�x1, �x2, 1
2 + x3, 1

2 + x4; � = even/odd C2/m Cm2m Cm
�x1, �x2, �x3, �x4; x1, �x2, �x3, �x4;
�x1, x2, 1

2 � x3, 1
2 � x4; � = odd/odd Cmcm Cmc21 Cmc21

x1, x2, 1
2 � x3, 1

2 � x4 (as t0 = general)



2/9, 10/9, 18/9 (= 2), . . . in a sublattice based on c1. These ions

are allotted for the O1 ion in the second subsystem, and

projected on the x3–x4 plane (Fig. 4e), which are at x4 = 1/4, 5/4,

9/4, . . . extending along x3. The atomic coordinate x3 for Rn (n

= 1, 2, 3, . . . ) on the three-dimensional section t0 = 0 is given by

(n � 3/4)/� = 2(4n � 3)/9. These positions are translated in a

unit cell, as shown in Fig. 4(f). Considering Fig. 3(b) and Fig.

4(f), the positions of R1–R8 are plotted on the x2–x4 plane in

the setting of the second subsystem (Fig. 5b), which clarifies

the parameters for a zigzag function of O1 as given in Table 3.

O ions indicated by S1–S9 on the zigzag line O2 (Fig. 3b) are

allotted for the O2 ion. Parameters for O2 are determined in

the same manner as that used for O1, and listed in Table 3. O

ions on the zigzag line O10 and O20 in Fig. 3(b) are generated

from those on a zigzag line O1 and O2 by a symmetry

operation.

3.2.2. Phases of odd m. It was suggested from a previous

study (Kimizuka et al., 1995) that the space group of phases in

the homologous series Ga2O3(ZnO)m is Cmcm for odd m as

well as even m. In our three-dimensional analyses for the

phase m = 9 the space group Cmcm was also confirmed. If M

ions were taken as the first subsystem and O ions are allotted

for the second subsystem, as for even m, the space group

Cmcm is impossible for any three-dimensional section of the

superspace group Cmmm(00�)0s0 for odd m, as a wavevector

component is � = (m + 3)/(m+2) = even/odd (see Table 2).

Instead, if O ions are taken as the first subsystem and M ions

are as the second subsystem with the superspace group

Cmmm(00�)0s0, the space group at the three-dimensional

section t0 = 0 is Cmcm for odd m (i.e. � = (m+2)/(m+3) = odd/

even). Therefore, this setting can be taken for phases of odd

m. Successively, we can exchange x3 and x4 in symmetry

research papers

122 Michiue and Kimizuka � Superspace description of Ga2O3(ZnO)m Acta Cryst. (2010). B66, 117–129

Figure 5
Projection of (a) metal and (b) oxygen ions in the ideal (3 + 1)-
dimensional model for Ga2O3(ZnO)6 on the x2–x4 plane. Atoms P1–P8,
Q1–Q8, R1–R9 and S1–S9 correspond to those in Fig. 3.

Figure 4
Occupation domains for (a), (b) M1, (c), (d) M2, and (e), (f) O1 in the
ideal (3 + 1)-dimensional model for Ga2O3(ZnO)6 projected on the x3–x4

plane. Atoms P1–P8, Q1–Q8, and R1–R9 correspond to those in Fig. 3.



operations, which means exchange of the subsystems so that

the M ions act as the first subsystem and the O ions as the

second one. Derived symmetry operations correspond to the

superspace group Cmcm(00�)000. The space group at the

three-dimensional section t0 = 0 of Cmcm(00�)000 with � =

(m + 3)/(m + 2) is consequently Cmcm for odd m (� = even/

odd), as shown in Table 2. In short, the two settings O/M for

the first/second subsystems with Cmmm(00�)0s0 [� = (m + 2)/

(m + 3)] and M/O for the first/second subsystems with

Cmcm(00�)000 [� = (m + 3)/(m + 2)], are equivalent and both

settings are possible for odd m. Possible settings for even and

odd m are summarized in Table 4. Note that it is possible to

take O/M for the first/second subsystems with Cmcm(00�)000

[� = (m + 2)/(m + 3)] for even m.

Zigzag arrangements of M and O ions on the x = 0 plane in

the m = 7 phase are indicated in Fig. 6. Structural parameters

for odd m with the superspace group Cmcm(00�)000 [� =

(m + 3)/(m + 2)] in Table 3 are obtained by the same manner

as that used for even m. It should be noted that the arrange-

ment of M ions in the m = 7 phase (Fig. 6a) is basically

identical to that of O ions in the m = 6 phse in Fig. 3(b). Also,

the arrangement of O ions in the m = 7 phase is basically

identical to that of M ions in the m = 8 phase. In general, the

arrangement of M ions in the m + 1 phase is basically identical

to that of O ions in the m phase. Therefore, it is natural that all

parameters except Vx2 of M ions for odd m in Table 3 are equal

to those of O ions for even m. The amplitude Vx2 for M ions of

m = 7 is�9/16, which is opposite in sign to that for O ions of m

= 6, i.e. 9/16. This is because the modulation wavevector of the

former is in the opposite direction to that of the latter. That is,

the modulation wavevector of the first (M) subsystem for m =

7, q1 = 10c�1/9, is reduced to c�1 /9, while that of the second (O)

subsystem for m = 6, q2 = 8c�2 /9, is

reduced to �c�2/9. The same relations

are seen between O ions for odd m and

M ions for even m.

3.3. Alternative settings

Structures of the Ga2O3(ZnO)m

homologous series were treated as

typical composite crystals in the

preceding section. That is, the whole

structure consists of two subsystems and

each subsystem is modulated with the

period of the other subsystem. The

modulation wavevector of a subsystem

is simply related to the basic period of

another subsystem, q1 = c�2 and q2 = c�1 .

The � component of the modulation

wavevector based on the first subsystem

is consequently c�2/c�1 = c1/c2. Hereafter,

we call this setting the ‘conventional

setting’. In this section ‘non-conven-

tional settings’ are presented to
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Figure 6
Arrangement of (a) metal and (b) oxygen ions on the x = 0 plane in the
ideal model for Ga2O3(ZnO)7.

Table 3
Crystallographic data and structural parameters for the ideal structure of Ga2O3(ZnO)m.

m: even

Orthorhombic, Cmmm(00�)0s0
a ’ 3.25, b ’ 19.7, c1 ’ 3.05 Å, c2 = (m + 2)c1/(m + 3), q1 = (m + 3)c�1 /(m + 2)

x0
1 x0

2 x0
3 x0

4 � Vx2

Subsystem 1
M1 (Zn/Ga) 0 3/8 0 0 1

2 (m + 2)/16
M2 (Zn/Ga) 0 7/8 1

2
1
2

1
2 (m + 2)/16

Subsystem 2
O1 0 5/8 1/4 3/4 1

2 (m + 3)/16
O2 0 1/8 3/4 1/4 1

2 (m + 3)/16
Vx1 = Vx3 = 0 for all sites.

m: odd

Orthorhombic, Cmcm(00�)000
a ’ 3.25, b ’ 19.7, c1 ’ 3.05 Å, c2 = (m + 2)c1/(m + 3), q1 = (m + 3)c�1 /(m + 2)

x0
1 x0

2 x0
3 x0

4 � Vx2

Subsystem 1
M1 (Zn/Ga) 0 5/8 1/4 3/4 1

2 �(m + 2)/16
M2 (Zn/Ga) 0 1/8 3/4 1/4 1

2 �(m + 2)/16

Subsystem 2
O1 0 3/8 0 0 1

2 �(m + 3)/16
O2 0 7/8 1

2
1
2

1
2 �(m + 3)/16

Vx1 = Vx3 = 0 for all sites.



demonstrate the similarity of the structures to those of the

modular structures, for which a superspace description was

recently reported (Elcoro et al., 2008). In these settings the

modulation wavevector of a subsystem is not given by the

basic period of another subsystem; q1 6¼ c�2 and q2 6¼ c�1 .

As seen in Fig. 7(a), 2(m + 2) layers of M ions are contained

in a unit cell along c, and 2(m + 3) O layers are also seen (Fig.

7b). Zigzag arrangements for M and O ions are indicated in

the figures, of which amplitudes are far larger than those in

Fig. 3. It seems possible that the structure is described with

basic vectors c1 = Cm/2(m + 2) and c2 = Cm/2(m + 3). It is,

however, impossible to take such basic vectors in a conven-

tional setting, because a fraction 2(m + 3)/2(m + 2) as a

wavevector component � = c�2/c�1 = c1/c2 is reduced to (m + 3)/

(m + 2). This means that the superstructure is reduced to half;

c0 = (m + 2)c1 = Cm/2. However, due to the zigzag modulation

with respect to x2, the period of the superstructure should be

Cm. Thus, the present homologous series is essentially

different from the usual composite crystals. We need to

consider the non-conventional setting for the description with

c1 = Cm/2(m + 2) and c2 = Cm/2(m + 3). This situation is similar

to that discussed in the modular structures of the lillianite

homologous series (Elcoro et al., 2008). Three types of non-

conventional setting are presented below in analogy with the

misfit composite model of the lillianite series. Here we use the

following matrix w instead of W (van Smaalen, 1991), as a�1 =

a�2 and b�1 = b�2 for all the cases

c�2
q2

� �
¼ w

c�1
q1

� �
: ð1Þ

In a conventional setting, the two subsystems are related to

each other by just exchanging a basic vector and a modulation

wavevector

w ¼
0 1

1 0

� �
: ð2Þ

In the projection on the x3–x4 plane for this setting, the M

ions in the first subsystem extend along x4 (Figs. 4b and d), and

the O ions in the second subsystem extend along x3 (Fig. 4f).

As the first one of the non-conventional settings, we take a

unit basis set a, b, c1 = Cm/2(m + 2), and a modulation wave-

vector q1 = C�m = c�1/2(m + 2) [that is, � = 1/2(m + 2)] for the

first subsystem of M ions, while a, b, c2 = Cm/2(m + 3), and q2 =

C�m are taken for the second subsystem of O ions. The second

subsystem is related to the first subsystem by

w ¼
1 2

0 1

� �
: ð3Þ

The M ion projected on the x3–x4 plane extends along x4,

while the O ion extends along the direction (x3, x4) = (�2, 1),

as shown in Fig. 8(a). This is different from the situation in the

conventional setting, in which the O1 ion extends along x3

(Fig. 4f). The superspace group Cmmm(00�)0s0 [� =

1/2(m + 2)] is given, as the space

group at the three-dimensional

section t0 = 0 is Cmcm for both even

and odd m (i.e. � = odd/even). It is

not difficult to obtain structural

parameters for this setting in Table

5, as a similar method to that used

for the conventional setting is

applied. At the first step, two

models were given by taking the

three-dimensional section t0 = 0

(modulo �); one is for even m

(model 1), and another is for odd m

(model 2). Each subsystem contains

only one ion, and fractional coor-

dinates x1–x4 of the M ion for odd

m are equal to those of the O ion

for even m. It should be noted that

structure parameters of model 1 are

equal to those of model 2, although

the origin of the former is shifted

by rt = (x1, x2, x3) = (0, 1
2,

1
2).

Considering the correction of q�rt =

�/2, the three-dimensional section

after the origin shift should be to =

�/2, which also gives the space
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Figure 7
Arrangement of (a) metal and (b) oxygen ions on the x = 0 plane in the ideal model for Ga2O3(ZnO)6 of
alternative settings.

Table 4
Superspace groups giving the space group Cmcm at the three-
dimensional section t0 = 0.

Subsystem 1/subsystem 2
Metal/oxygen
[� = (m + 3)/(m + 2)]

Oxygen/metal
[� = (m + 2)/(m + 3)]

m: even Cmmm(00�)0s0 Cmcm(00�)000
m: odd Cmcm(00�)000 Cmmm(00�)0s0



group Cmcm in three-dimensional space as it is included in the

case of to = 0 (modulo 1/2M) in Table 2. Thus, we can finally

take model 1 as a common structure model for both even and

odd m, although the three-dimensional section to = �/2

(modulo �) must be taken for odd m. Of course, instead,

model 2 can also be used for even m by taking the three-

dimensional section to = �/2 (modulo �). The highest order of

refinable parameters is m + 2 for M1 and m + 3 for O1, which

are approximately twice those in the conventional setting with

� = (m + 3)/(m + 2). As two M and two O ions are contained in

the conventional setting, the number of total refinable para-

meters is equal in the two settings.

Alternatively, if a unit basis set a, b, c1 = Cm/2(m + 3), and a

modulation wavevecor q1 = C�m = c�1/2(m + 3) [that is, � =

1/2(m + 3)] are taken for the first subsystem of O ions, the

second subsystem of M ions is defined by a, b, c2 = Cm/2(m + 2)

and q2 = C�m with

w ¼
1 �2

0 1

� �
: ð4Þ

In this setting, the O1 ion extends along x4 and the M1 ion

extends along the (x3, x4) = (2, 1) direction, as shown in Fig.

8(b). The superspace group Cmmm(00�)0s0 [� = 1/2(m + 3)] is

also taken in this case. Structural parameters for this setting

are the same as those in Table 5, although O1 is allocated for

the first subsystem and M1 for the second subsystem.

Furthermore, an intermediate setting is also possible. That

is, the unit basis set a, b, c0 = Cm/(2m + 5) with a modulation

wavevector q0 = C�m = c�0 /(2m + 5) is taken for a void zeroth

subsystem, i.e. a subsystem containing no atoms. A unit basis

set of a, b, c1 = Cm/2(m + 2) with a modulation wavevector q1 =

C�m is taken for the first subsystem of M ions, and a, b, c2 =

Cm/(2m + 3), and q2 = C�m are for the second subsystem of O

ions. The first and second subsystems are related to the zeroth

subsystem by

w1
¼

1 �1

0 1

� �
and w2

¼
1 1

0 1

� �
; where

c�1

q1

� �
¼ w1

c�0

q0

� �
and

c�2

q2

� �
¼ w2

c�0

q0

� �
: ð5Þ

The M ion extends along the (x3, x4) = (1, 1) direction, while

the O ion extends along (x3, x4) = (�1, 1), as shown in Fig. 8c.

The superspace group Cmcm(00�)0s0 [� = 1/(2m + 5)] is used

in this case, because the space group at the three-dimensional

section t0 = 0 is Cmcm for even and odd m (i.e. � = odd/odd), as

shown in Table 2. Structural parameters for this setting are the

same as those in Table 5.

4. Structure refinements

The conventional setting needs two structure models (Table 3)

with different superspace groups; one is for odd m and another

is for even m. On the other hand, either model 1 or model 2 in

the non-conventional setting (Table 5) provides a common

structure model for even and odd m. Therefore, it is concluded

that the non-conventional setting is more suitable for the

unified description of the homologous series Ga2O3(ZnO)m.

There are six options for the possible combination of the

model (1 and 2) and the non-conventional setting type (I–III).

In this section only one case, that is model 1 with type I setting,

is presented, as all of the six options are equivalent.
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Figure 8
Projection of the M1 and O1 ions for Ga2O3(ZnO)6 on the x3–x4 plane in
the non-conventional setting of (a) type I, (b) type II and (c) type III.



Deviation in a real structure from an ideal one is considered

by additional Fourier series. To demonstrate the efficiency of

the method, structure refinements were carried out for the two

phases with m = 6 and m = 9 in the homologous series

Ga2O3(ZnO)m. The former is an example of the phases for

even m, and the latter for odd m. As the refinement of the Ga/

Zn ratio at a site using X-ray diffraction data is almost

impossible, the Ga/Zn ratio was fixed at 2/m for all metal sites

in refinements.

4.1. Phase of m = 6

As mentioned in x3, the ideal model in Fig. 1 needs a few

modifications before being used in the refinement of real

structures. One of the M sites is in the

square-pyramidal coordination, which is

a rather peculiar and unstable environ-

ment for Ga and Zn ions. Structure

refinement for the m = 6 phase in three-

dimensional space (Michiue et al., 2008)

revealed that this M site, M8 = (0, 1/

8 + �y, 1/4) in the previous paper, is not

fully occupied and a displaced position

M7 = (1
2, 1/8 + �y0, 1/4) was introduced

for accommodation of M ions moving

away from the M8 site. Further, M8

slightly deviated from its original posi-

tion on the mirror plane Z = 1/4, where

Z is the fractional coordinate based on

Cm of the superstructure. In the ideal

model in Fig. 3(a) the P7 site at (0, 7/8, 3/

4) corresponds to the above M8 site.

Considering the situation in a real

structure, an additional position corre-

sponding to the above M7 is to be

introduced for accommodation of part

of the M ions moving away from the P7

site; P70 = (1
2, 7/8, 3/4). In the (3 + 1)-

dimensional model in x3 the P7 site was

treated as part of the M1 site. However,

it is difficult to deal with P7 and P70 sites

as part of the M1 site in the refinement

of a real structure. So far as a site is

treated as part of the M1 site, its posi-

tion is restricted on the x = 0 plane

because displacive modulations are

forbidden in the x1 direction. Occupa-

tion factors for the P7 and P70 sites are

less than unity, while the other sites

allocated for M1 (i.e. P1–P6 and P8) are

fully occupied. Furthermore, deviation

of P7 from the mirror plane Z = 3/4

should be considered. Thus, it is

obviously better that the occupation

domain for P7 (and P70) is separated

from M1, and treated as an independent

site.

Model 1 with type I setting of a superspace group

Cmmm(00�)0s0 in Table 5 is used taking the three-dimen-

sional section t0 = 0. The occupation domain for P7 is sepa-

rated from M1, and treated as an independent site M1a using

the crenel function with � = 1/16 [� = 1/2(m + 2) for general

m]. Another occupation domain with � = 1/16 is allocated for

the P70 site, which is labelled as M1b. M1 is defined by (x0
1, x0

2,

x0
3, x0

4) = (0, 3/8, 0, 0) and � = 1
2 � 1/16 = 7/16 [� = 1

2 � 1/

2(m + 2) = (m + 1)/2(m + 2) in general]. The amplitude of the

zigzag function is given by Vx2 = �3(m + 2)�/8 = �21/16, as

the slope of the zigzag function Vx2/� = �3(m + 2)/8 is

unchanged. Owing to the definition of the zigzag function, the

P3 site is consequently separated from M1, and treated as an

independent M1c site with � = 1/16. Thus, four metal sites are
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Table 5
Crystallographic data and structural parameters for the ideal structure of Ga2O3(ZnO)m in the non-
conventional setting.

Type I Orthorhombic, Cmmm(00�)0s0
a ’ 3.25, b ’ 19.7, c1 ’ 1.53 Å, c2 = (m + 2)c1/(m + 3), q1 =
c�1 /2(m+2), � = 1/2(m + 2)

Type II Orthorhombic, Cmmm(00�)0s0
a ’ 3.25, b ’ 19.7, c1 ’ 1.38 Å, c2 = (m + 3)c1/(m + 2), q1 =
c�1 /2(m + 3), � = 1/2(m + 3)

Type III Orthorhombic, Cmcm(00�)0s0
a ’ 3.25, b ’ 19.7, c0 ’ 1.46 Å, c1 = (2m + 5)c0/2(m + 2),
c2 = (2m + 5)c0/2(m + 3), q0 = c�0 /(2m + 5), � = 1/(2m + 5)

Model 1: for even m at t0 = 0 (modulo �), and for odd m at t0 = �/2 (modulo �)
x0

1 x0
2 x0

3 x0
4 � Vx2

Subsystem 1
M2 0 3/8 0 0 1

2 �3(m + 2)/16

Subsystem 2
O1 0 7/8 1

2 0 1
2 �3(m + 3)/16

Vx1 = Vx3 = 0 for all sites.

Model 2: for odd m at t0 = 0 (modulo �), and for even m at t0 = �/2 (modulo �)
x0

1 x0
2 x0

3 x0
4 � Vx2

Subsystem 1
M1 0 7/8 1

2 0 1
2 �3(m + 2)/16

Subsystem 2
O1 0 3/8 0 0 1

2 �3(m + 3)/16
Vx1 = Vx3 = 0 for all sites.
In type II setting, O1 is allocated for the first subsystem, and M1 is for the second one.

Table 6
Modified structure parameters for Ga2O3(ZnO)m in model 1 with the non-conventional setting.

x0
1 x0

2 x0
3 x0

4 � Vx2

Subsystem 1
M1 0 3/8 0 0 (m + 1)/2(m + 2) �3(m + 2)�/8
M1a 0 3(m + 4)/16 0 3/4 1/2(m + 2)
M1b 1

2 3(m + 4)/16 0 3/4 1/2(m + 2)
M1c 0 �3m/16 0 1/4 1/2(m + 2)

Subsystem 2
O1 0 7/8 1

2 0 1
2 �3(m + 3)/16

The three-dimensional section should be t0 = 0 for even m and t0 = �/2 for odd m, where � is 1/2(m + 2) for type I, 1/
2(m + 3) for type II, and 1/(2m + 5) for type III setting as given in Table 5. The crenel function is used for the occupation
function of M1a, M1b and M1c. The sum of occupation factors at M1a and M1b is fixed at the unity.



taken for the first subsystem as listed in Table 6, although M1a

is moved to a position deviating from x0
3 ¼ 0 in the final result

as given in supplementary materials (Table S1). Considering

the splitting of this metal site, a constraint condition was

imposed on occupation factors so that 2Occ[M1a] + Occ[M1b]

is unity. Parameters for O1 of the second subsystem in Table 5

are used for the initial model without modification. Occupa-

tion domains of metal and oxygen atoms are projected on the

x2–x4 (Fig. 9a) and x3–x4 (Fig. 9b) planes. Parameters in Table

S1 are unchanged even when other types of the non-conven-

tional setting are used, although M sites are taken for the

second subsystem and the O1 is for the first subsystem in type

II setting.

Results of the refinement are summarized in Table 7, which

are equivalent to those from the three-dimensional refinement

as all of the refinable parameters were refined. Final reliability

factors are a little improved compared with those in the

previous study (Michiue et al., 2008) for the following reason.

Ga atoms were located at certain positions of five-coordina-

tion in the previous model, and isotropic atomic displacement

parameters were taken for one of the O atoms (O5 in the

previous paper) because anisotropic atomic displacement

parameters were not positive definite. This O atom had to be

located on a position deviating from x = 0, which is the split-

ting site. On the other hand, the Ga/Zn ratio was set to equal

at all metal sites in this work. It was found that anisotropic

atomic displacement parameters were possible for all the O

atoms in this model, and the above O atom can be on the

mirror plane x = 0 by taking a large U11.

4.2. Phase of m = 9

M sites of the square-pyramidal coordination are also seen

in the ideal model for odd m. Therefore, it is expected that

similar phenomena to those observed in the m = 6 phase also

occur in the m = 9 phase. However, we first tried the refine-

ment using the ideal model without modifications and checked

the fitting. In the conventional setting, reliability factors were

Robs(F) = 0.088, wRall(F2) = 0.200. A modulation function of

the anisotropic atomic displacement parameter U11 for the M1

had a steep peak, indicating the splitting for a specific site,

although variations in the atomic displacement parameters of

the M2 site were moderate. Therefore, we need to modify the

ideal model in x3.

Model 1 with type I setting of a superspace group

Cmmm(00�)0s0 in Table 5 is used taking the three-dimen-

sional section t0 = �/2 = 1/44. Modifications for the occupation

domains of the M site are similar to those made for the m = 6

phase (Table 6). Final parameters are listed in the supple-

mentary materials (Table S2). The occupation domains of

metal and oxygen atoms are projected on the x2–x4 (Fig. 9c)

and x3–x4 (Fig. 9d) planes. Results of refinements are

summarized in Table 7.

All of the 149 refinable parameters are refined in all the

cases in Table 7. Refinements with fewer parameters were also

carried out, and the results were converted to superstructures

in three-dimensional space. Obtained structure parameters

were compared with those from the three-dimensional

refinement. It was found that the difference for some para-

meters exceeded the standard uncertainty. That is, changes by

the reduction of the number of parameters are considered as

significant, although differences in reliability factors are little.
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Figure 9
Projection of the metal and oxygen ions for Ga2O3(ZnO)6 on (a) x2–x4

and (b) x3–x4, and for Ga2O3(ZnO)9 on (c) x2–x4 and (d) x3–x4 in model 1
with the non-conventional setting of type I.



Thus, refinements using all of the refinable parameters were

taken as final results, which are equivalent to that from the

three-dimensional refinement. Nevertheless, the superiority of

the superspace description to the three-dimensional model

should be clear for phases of the larger m in the homologous

series. The reduction of the number of parameters with the use

of the (3 + 1)-dimensional model is valuable when the three-

dimensional refinement of a phase does not converge, for

example.

5. Concluding remarks

Structures of the homologous series Ga2O3(ZnO)m were

treated as a compositely modulated structure, and a unified

model for the structures was presented with the use of the

superspace formalism. The ideal model was given as

commensurate composite crystals, in which displacive modu-

lations of ions were well described by the zigzag function with

large amplitudes with respect to x2. This character originates

from the fact that the structures are built up by unit-cell

twinning (Hyde et al., 1979). In that sense, the present

homologous series is essentially different from the usual

composite crystals, and considered as a kind of modular

structure. These considerations are important for the crystal

chemistry of the homologous series and well demonstrated by

the superspace description. Consequently, alternative settings

were also proposed in analogy with the misfit composite model

for the lillianite homologous series (Elcoro et al., 2008), which

gave the best model for the unified description of the homo-

logous series Ga2O3(ZnO)m.

The validity of the model was confirmed by the refinements

for phases of m = 6 and m = 9 in the homologous series

Ga2O3(ZnO)m. The ideal model was modified to take into

account a few complex phenomena in real structures before

being used in refinements. That is, the occupation domain for

the metal site was divided into parts, which were treated as

independent sites. As all of the refinable parameters have

been refined in this study, the results are equivalent to those

from the three-dimensional refinements. Using the (3 + 1)-

dimensional model presented, the number of parameters can

be reduced (that is, less than the maximum permitted), if

necessary, for refinements of the phases of the larger m of the

homologous series.

One of the authors (YM) is grateful to Dr Vaclav Petřı́ček

for his help in using the zigzag function in JANA2006.
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Elcoro, L., Zúñiga, F. J. & Perez-Mato, J. M. (2004). Acta Cryst. B60,
21–31.

Evain, M., Boucher, F., Gourdon, O., Petricek, V., Dusek, M. &
Bezdicka, P. (1998). Chem. Mater. 10, 3068–3076.

Hyde, B. G., Andersson, S., Bakker, M., Plug, C. M. & O’Keeffe, M.
(1979). Prog. Solid State Chem. 12, 273–327.

Isobe, M., Kimizuka, N., Nakamura, M. & Mohri, T. (1994). Acta
Cryst. C50, 332–336.

Janner, A. & Janssen, T. (1980a). Acta Cryst. A36, 399–408.
Janner, A. & Janssen, T. (1980b). Acta Cryst. A36, 408–415.
Kasper, H. (1967). Z. Anorg. Allg. Chem. 349, 113–123.
Kimizuka, N., Isobe, M. & Nakamura, M. (1995). J. Solid State Chem.

116, 170–178.
Kimizuka, N., Isobe, M., Nakamura, M. & Mohri, T. (1993). J. Solid

State Chem. 103, 394–402.
Kimizuka, N., Mohri, T. & Nakamura, M. (1989). J. Solid State Chem.

81, 70–77.
Kudo, A. & Mikami, I. (1998). Chem. Lett. pp. 1027–1028.
Michiue, Y., Kimizuka, N. & Kanke, Y. (2008). Acta Cryst. B64, 521–

526.

research papers

128 Michiue and Kimizuka � Superspace description of Ga2O3(ZnO)m Acta Cryst. (2010). B66, 117–129

Table 7
Results of refinements for Ga2O3(ZnO)6 and Ga2O3(ZnO)9.

Ga2O3(ZnO)6 Ga2O3(ZnO)9

Three-dimensional (3 + 1)-dimensional Three-dimensional (3 + 1)-dimensional

Independent/observed [Io > 2�(Io)] reflections 3699/1349 3699/1349 1862/993 1862/993
Number of parameters 115 115 149 149
Robs(F)/wRall(F2)
All 0.0439/0.0988 0.0439/0.0988 0.0340/0.0677 0.0340/0.0677
Main reflections 0.0407/0.0886 0.0348/0.0750
Satellites of order

1 0.0448/0.1022 0.0366/0.0768
2 0.0415/0.0959 0.0304/0.0628
3 0.0468/0.1155 0.0366/0.0728
4 0.0502/0.1115 0.0329/0.0678

S 1.03 1.03 1.35 1.35



Michiue, Y., Yamamoto, A., Onoda, M., Sato, A., Akashi, T., Yamane,
H. & Goto, T. (2005). Acta Cryst. B61, 145–153.

Michiue, Y., Yamamoto, A. & Tanaka, M. (2006). Acta Cryst. B62,
737–744.

Michiue, Y., Yamamoto, A. & Tanaka, M. (2007). Philos. Mag. 87,
2655–2661.

Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.
Moriga, T., Edwards, D. D., Mason, T. O., Palmer, G. B.,

Poeppelmeier, K. R., Schindler, J. L., Kannewurf, C. R. &
Nakabayashi, I. (1998). J. Am. Ceram. Soc. 81, 1310–
1316.

Nakamura, M., Kimizuka, N. & Mohri, T. (1990). J. Solid State Chem.
86, 16–40.

Nakamura, M., Kimizuka, N. & Mohri, T. (1991). J. Solid State Chem.
93, 298–315.

Nakamura, M., Kimizuka, N., Mohri, T. & Isobe, M. (1993). J. Solid
State Chem. 105, 535–549.

Ohta, H., Seo, W. S. & Koumoto, K. (1996). J. Am. Ceram. Soc. 79,
2193–2196.

Orlov, I., Palatinus, L., Arakcheeva, A. & Chapuis, G. (2007). Acta
Cryst. B63, 703–712.

Perez-Mato, J. M., Madariaga, G., Zuñiga, F. J. & Garcia Arribas, A.
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Petřı́ček, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute
of Physics, Praha, Czech Republic.

van Smaalen, S. (1987). Acta Cryst. A43, 202–207.
van Smaalen, S. (1991). Phys. Rev. B, 43, 11330–11341.
van Smaalen, S. (1995). Cryst. Rev. 4, 79–202.
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785.
Yamamoto, A. (1996). Acta Cryst. A52, 509–560.
Yamamoto, A., Janssen, T., Janner, A. & de Wolff, P. M. (1985). Acta

Cryst. A41, 528–530.

research papers

Acta Cryst. (2010). B66, 117–129 Michiue and Kimizuka � Superspace description of Ga2O3(ZnO)m 129


